Mediating the potent ROS toxicity of acrolein in neurons with silica nanoparticles and a natural product approach

نویسندگان

  • Desiree White-Schenk
  • Riyi Shi
  • James F. Leary
  • Désirée White-Schenk
چکیده

Acrolein, a very reactive aldehyde, is a culprit in the biochemical cascade after primary, mechanical spinal cord injury (SCI), which leads to the destruction of tissue initially unharmed, referred to as “secondary injury”. Additionally, in models of multiple sclerosis (MS) and some clinical research, acrolein levels are significantly increased. Due to its ability to make more copies of itself in the presence of tissue via lipid peroxidation, researchers believe that acrolein plays a role in the increased destruction of the central nervous system in both SCI and MS. Hydralazine, an FDAapproved hypotensive drug, has been shown to scavenge acrolein, but its side effects and short half life at the appropriate dose for acrolein scavenging must be improved for beneficial clinical translation. Therefore, a nanomedical approach has been designed using silica nanoparticles as a porous delivery vehicle hydralazine. The silica particles are formed in a one-step method that incorporates poly(ethylene) glycol (PEG), a stealth molecule, directly onto the nanoparticles. As an additional avenue for study, a natural product in green tea, epigallocatechin gallate (EGCG), has been explored for its ability to react with acrolein, disabling its reactive capabilities. Upon demonstration of attenuating acrolein, EGCG's delivery may also be improved using the nanomedical approach. The current work exposes the potential of using silica nanoparticles as a delivery vehicle and EGCG's antioxidant capabilities in B35 neuroblastoma cells exposed to acrolein. We also measure nanotoxicity to individual rat neurons using high-throughput image scanning cytometry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production of Silica Nanoparticles from Rice Husk as Agricultural Waste by Environmental Friendly Technique

Extensive application of silica nanoparticles (SNPs) in various industrial products has led to the development of silica extraction methodologies out of various waste products. Rice husk is an agricultural waste with a high content of amorphous silica. However, the presence of metal ion impurities and unburned carbon in the rice husk content may present an adverse effect on product color and pu...

متن کامل

The Effect of Resveratrol against Acrolein Toxicity in Mitochondria isolated from Rat Liver

Introduction: Acrolein is an important environmental, food and water pollutant that plays an important role in the development of several diseases. Resveratrol is a phenolic compound with antioxidant properties found in fruits such as grapes, berries and peanuts. The purpose of this study was to evaluate the protective effect of resveratrol in preventing Acrolein-induced toxicity in isolated mi...

متن کامل

Comparison of Neuroprotective Effects of Melissa officinalis Total Extract and Its Acidic and Non-Acidic Fractions against A β-Induced Toxicity

  Alzheimer’s disease (AD) is a neurodegenerative disease that was characterized with deposit of beta amyloid (Aβ) aggregate in senile plaque. Oxidative damage to neurons and loss of cholinergic neurons in forebrain region are observed in this disease. Melissa officinalis is a medicinal plant from Lamiaceae family, used traditionally in the treatment of cognitive disorders. It has cholinomimeti...

متن کامل

Comparison of the Protective Effects of Curcumin and Nanocurcumin on Acrolein Induced Mitochondrial Toxicity Isolated from Rat Liver

Background and Objectives: Contact with acrolein rapidly reduces intracellular glutathione and its antioxidant capacity and causes mitochondrial dysfunction. The use of some polymeric nanocurcumin increases the stability of curcumin. In this study, the effect of these two, was investigated on acrolein-induced toxicity in mitochondria isolated from rat liver cells.   Methods: In this experiment...

متن کامل

Toxicity Assessment of SiO2 Nanoparticles to Pear Seedlings

To date, the effects of nanoparticles on woody plants remain unaddressed. This study reveals some of the physiological and biochemical effects of SiO2 nanoparticles on wild pear seedlings. The seedlings were irrigated with different concentrations of nano silica (0, 10, 100, 500 and 1000 mg/l) for 14 days. Nanoparticle adsorption and absorption, biomass allocation, gas exchange, relative water ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016